3.9.83 \(\int \frac {\sqrt {e x}}{(a-b x^2) \sqrt {c-d x^2}} \, dx\) [883]

3.9.83.1 Optimal result
3.9.83.2 Mathematica [C] (verified)
3.9.83.3 Rubi [A] (verified)
3.9.83.4 Maple [B] (verified)
3.9.83.5 Fricas [F(-1)]
3.9.83.6 Sympy [F]
3.9.83.7 Maxima [F]
3.9.83.8 Giac [F]
3.9.83.9 Mupad [F(-1)]

3.9.83.1 Optimal result

Integrand size = 30, antiderivative size = 203 \[ \int \frac {\sqrt {e x}}{\left (a-b x^2\right ) \sqrt {c-d x^2}} \, dx=-\frac {\sqrt [4]{c} \sqrt {e} \sqrt {1-\frac {d x^2}{c}} \operatorname {EllipticPi}\left (-\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}},\arcsin \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right ),-1\right )}{\sqrt {a} \sqrt {b} \sqrt [4]{d} \sqrt {c-d x^2}}+\frac {\sqrt [4]{c} \sqrt {e} \sqrt {1-\frac {d x^2}{c}} \operatorname {EllipticPi}\left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}},\arcsin \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right ),-1\right )}{\sqrt {a} \sqrt {b} \sqrt [4]{d} \sqrt {c-d x^2}} \]

output
-c^(1/4)*EllipticPi(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2),-b^(1/2)*c^(1/2)/a 
^(1/2)/d^(1/2),I)*e^(1/2)*(1-d*x^2/c)^(1/2)/d^(1/4)/a^(1/2)/b^(1/2)/(-d*x^ 
2+c)^(1/2)+c^(1/4)*EllipticPi(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2),b^(1/2)* 
c^(1/2)/a^(1/2)/d^(1/2),I)*e^(1/2)*(1-d*x^2/c)^(1/2)/d^(1/4)/a^(1/2)/b^(1/ 
2)/(-d*x^2+c)^(1/2)
 
3.9.83.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 11.05 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.34 \[ \int \frac {\sqrt {e x}}{\left (a-b x^2\right ) \sqrt {c-d x^2}} \, dx=\frac {2 x \sqrt {e x} \sqrt {\frac {c-d x^2}{c}} \operatorname {AppellF1}\left (\frac {3}{4},\frac {1}{2},1,\frac {7}{4},\frac {d x^2}{c},\frac {b x^2}{a}\right )}{3 a \sqrt {c-d x^2}} \]

input
Integrate[Sqrt[e*x]/((a - b*x^2)*Sqrt[c - d*x^2]),x]
 
output
(2*x*Sqrt[e*x]*Sqrt[(c - d*x^2)/c]*AppellF1[3/4, 1/2, 1, 7/4, (d*x^2)/c, ( 
b*x^2)/a])/(3*a*Sqrt[c - d*x^2])
 
3.9.83.3 Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 211, normalized size of antiderivative = 1.04, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {368, 27, 993, 1543, 1542}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {e x}}{\left (a-b x^2\right ) \sqrt {c-d x^2}} \, dx\)

\(\Big \downarrow \) 368

\(\displaystyle \frac {2 \int \frac {e^3 x}{\sqrt {c-d x^2} \left (a e^2-b e^2 x^2\right )}d\sqrt {e x}}{e}\)

\(\Big \downarrow \) 27

\(\displaystyle 2 e \int \frac {e x}{\sqrt {c-d x^2} \left (a e^2-b e^2 x^2\right )}d\sqrt {e x}\)

\(\Big \downarrow \) 993

\(\displaystyle 2 e \left (\frac {\int \frac {1}{\left (\sqrt {a} e-\sqrt {b} e x\right ) \sqrt {c-d x^2}}d\sqrt {e x}}{2 \sqrt {b}}-\frac {\int \frac {1}{\left (\sqrt {b} x e+\sqrt {a} e\right ) \sqrt {c-d x^2}}d\sqrt {e x}}{2 \sqrt {b}}\right )\)

\(\Big \downarrow \) 1543

\(\displaystyle 2 e \left (\frac {\sqrt {1-\frac {d x^2}{c}} \int \frac {1}{\left (\sqrt {a} e-\sqrt {b} e x\right ) \sqrt {1-\frac {d x^2}{c}}}d\sqrt {e x}}{2 \sqrt {b} \sqrt {c-d x^2}}-\frac {\sqrt {1-\frac {d x^2}{c}} \int \frac {1}{\left (\sqrt {b} x e+\sqrt {a} e\right ) \sqrt {1-\frac {d x^2}{c}}}d\sqrt {e x}}{2 \sqrt {b} \sqrt {c-d x^2}}\right )\)

\(\Big \downarrow \) 1542

\(\displaystyle 2 e \left (\frac {\sqrt [4]{c} \sqrt {1-\frac {d x^2}{c}} \operatorname {EllipticPi}\left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}},\arcsin \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right ),-1\right )}{2 \sqrt {a} \sqrt {b} \sqrt [4]{d} \sqrt {e} \sqrt {c-d x^2}}-\frac {\sqrt [4]{c} \sqrt {1-\frac {d x^2}{c}} \operatorname {EllipticPi}\left (-\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}},\arcsin \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right ),-1\right )}{2 \sqrt {a} \sqrt {b} \sqrt [4]{d} \sqrt {e} \sqrt {c-d x^2}}\right )\)

input
Int[Sqrt[e*x]/((a - b*x^2)*Sqrt[c - d*x^2]),x]
 
output
2*e*(-1/2*(c^(1/4)*Sqrt[1 - (d*x^2)/c]*EllipticPi[-((Sqrt[b]*Sqrt[c])/(Sqr 
t[a]*Sqrt[d])), ArcSin[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], -1])/(Sqrt[ 
a]*Sqrt[b]*d^(1/4)*Sqrt[e]*Sqrt[c - d*x^2]) + (c^(1/4)*Sqrt[1 - (d*x^2)/c] 
*EllipticPi[(Sqrt[b]*Sqrt[c])/(Sqrt[a]*Sqrt[d]), ArcSin[(d^(1/4)*Sqrt[e*x] 
)/(c^(1/4)*Sqrt[e])], -1])/(2*Sqrt[a]*Sqrt[b]*d^(1/4)*Sqrt[e]*Sqrt[c - d*x 
^2]))
 

3.9.83.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 368
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> With[{k = Denominator[m]}, Simp[k/e   Subst[Int[x^(k*(m + 1) 
 - 1)*(a + b*(x^(k*2)/e^2))^p*(c + d*(x^(k*2)/e^2))^q, x], x, (e*x)^(1/k)], 
 x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && FractionQ[m 
] && IntegerQ[p]
 

rule 993
Int[(x_)^2/(((a_) + (b_.)*(x_)^4)*Sqrt[(c_) + (d_.)*(x_)^4]), x_Symbol] :> 
With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2* 
b)   Int[1/((r + s*x^2)*Sqrt[c + d*x^4]), x], x] - Simp[s/(2*b)   Int[1/((r 
 - s*x^2)*Sqrt[c + d*x^4]), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
a*d, 0]
 

rule 1542
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[ 
{q = Rt[-c/a, 4]}, Simp[(1/(d*Sqrt[a]*q))*EllipticPi[-e/(d*q^2), ArcSin[q*x 
], -1], x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]
 

rule 1543
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[ 
Sqrt[1 + c*(x^4/a)]/Sqrt[a + c*x^4]   Int[1/((d + e*x^2)*Sqrt[1 + c*(x^4/a) 
]), x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] &&  !GtQ[a, 0]
 
3.9.83.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(325\) vs. \(2(143)=286\).

Time = 3.18 (sec) , antiderivative size = 326, normalized size of antiderivative = 1.61

method result size
default \(\frac {\left (\Pi \left (\sqrt {\frac {d x +\sqrt {c d}}{\sqrt {c d}}}, \frac {\sqrt {c d}\, b}{\sqrt {c d}\, b +\sqrt {a b}\, d}, \frac {\sqrt {2}}{2}\right ) b c -\sqrt {c d}\, \sqrt {a b}\, \Pi \left (\sqrt {\frac {d x +\sqrt {c d}}{\sqrt {c d}}}, \frac {\sqrt {c d}\, b}{\sqrt {c d}\, b +\sqrt {a b}\, d}, \frac {\sqrt {2}}{2}\right )+\Pi \left (\sqrt {\frac {d x +\sqrt {c d}}{\sqrt {c d}}}, \frac {\sqrt {c d}\, b}{\sqrt {c d}\, b -\sqrt {a b}\, d}, \frac {\sqrt {2}}{2}\right ) b c +\sqrt {c d}\, \sqrt {a b}\, \Pi \left (\sqrt {\frac {d x +\sqrt {c d}}{\sqrt {c d}}}, \frac {\sqrt {c d}\, b}{\sqrt {c d}\, b -\sqrt {a b}\, d}, \frac {\sqrt {2}}{2}\right )\right ) d \sqrt {-\frac {d x}{\sqrt {c d}}}\, \sqrt {\frac {-d x +\sqrt {c d}}{\sqrt {c d}}}\, \sqrt {2}\, \sqrt {\frac {d x +\sqrt {c d}}{\sqrt {c d}}}\, \sqrt {e x}}{2 \sqrt {-d \,x^{2}+c}\, \left (\sqrt {c d}\, b -\sqrt {a b}\, d \right ) \left (\sqrt {c d}\, b +\sqrt {a b}\, d \right ) x}\) \(326\)
elliptic \(\frac {\sqrt {e x}\, \sqrt {\left (-d \,x^{2}+c \right ) e x}\, \left (-\frac {e \sqrt {c d}\, \sqrt {\frac {d x}{\sqrt {c d}}+1}\, \sqrt {-\frac {2 d x}{\sqrt {c d}}+2}\, \sqrt {-\frac {d x}{\sqrt {c d}}}\, \Pi \left (\sqrt {\frac {\left (x +\frac {\sqrt {c d}}{d}\right ) d}{\sqrt {c d}}}, -\frac {\sqrt {c d}}{d \left (-\frac {\sqrt {c d}}{d}-\frac {\sqrt {a b}}{b}\right )}, \frac {\sqrt {2}}{2}\right )}{2 b d \sqrt {-d e \,x^{3}+c e x}\, \left (-\frac {\sqrt {c d}}{d}-\frac {\sqrt {a b}}{b}\right )}-\frac {e \sqrt {c d}\, \sqrt {\frac {d x}{\sqrt {c d}}+1}\, \sqrt {-\frac {2 d x}{\sqrt {c d}}+2}\, \sqrt {-\frac {d x}{\sqrt {c d}}}\, \Pi \left (\sqrt {\frac {\left (x +\frac {\sqrt {c d}}{d}\right ) d}{\sqrt {c d}}}, -\frac {\sqrt {c d}}{d \left (-\frac {\sqrt {c d}}{d}+\frac {\sqrt {a b}}{b}\right )}, \frac {\sqrt {2}}{2}\right )}{2 b d \sqrt {-d e \,x^{3}+c e x}\, \left (-\frac {\sqrt {c d}}{d}+\frac {\sqrt {a b}}{b}\right )}\right )}{e x \sqrt {-d \,x^{2}+c}}\) \(327\)

input
int((e*x)^(1/2)/(-b*x^2+a)/(-d*x^2+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/2*(EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((c*d) 
^(1/2)*b+(a*b)^(1/2)*d),1/2*2^(1/2))*b*c-(c*d)^(1/2)*(a*b)^(1/2)*EllipticP 
i(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((c*d)^(1/2)*b+(a*b) 
^(1/2)*d),1/2*2^(1/2))+EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c 
*d)^(1/2)*b/((c*d)^(1/2)*b-(a*b)^(1/2)*d),1/2*2^(1/2))*b*c+(c*d)^(1/2)*(a* 
b)^(1/2)*EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/(( 
c*d)^(1/2)*b-(a*b)^(1/2)*d),1/2*2^(1/2)))*d*(-d*x/(c*d)^(1/2))^(1/2)*((-d* 
x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*2^(1/2)*((d*x+(c*d)^(1/2))/(c*d)^(1/2))^ 
(1/2)*(e*x)^(1/2)/(-d*x^2+c)^(1/2)/((c*d)^(1/2)*b-(a*b)^(1/2)*d)/((c*d)^(1 
/2)*b+(a*b)^(1/2)*d)/x
 
3.9.83.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {e x}}{\left (a-b x^2\right ) \sqrt {c-d x^2}} \, dx=\text {Timed out} \]

input
integrate((e*x)^(1/2)/(-b*x^2+a)/(-d*x^2+c)^(1/2),x, algorithm="fricas")
 
output
Timed out
 
3.9.83.6 Sympy [F]

\[ \int \frac {\sqrt {e x}}{\left (a-b x^2\right ) \sqrt {c-d x^2}} \, dx=- \int \frac {\sqrt {e x}}{- a \sqrt {c - d x^{2}} + b x^{2} \sqrt {c - d x^{2}}}\, dx \]

input
integrate((e*x)**(1/2)/(-b*x**2+a)/(-d*x**2+c)**(1/2),x)
 
output
-Integral(sqrt(e*x)/(-a*sqrt(c - d*x**2) + b*x**2*sqrt(c - d*x**2)), x)
 
3.9.83.7 Maxima [F]

\[ \int \frac {\sqrt {e x}}{\left (a-b x^2\right ) \sqrt {c-d x^2}} \, dx=\int { -\frac {\sqrt {e x}}{{\left (b x^{2} - a\right )} \sqrt {-d x^{2} + c}} \,d x } \]

input
integrate((e*x)^(1/2)/(-b*x^2+a)/(-d*x^2+c)^(1/2),x, algorithm="maxima")
 
output
-integrate(sqrt(e*x)/((b*x^2 - a)*sqrt(-d*x^2 + c)), x)
 
3.9.83.8 Giac [F]

\[ \int \frac {\sqrt {e x}}{\left (a-b x^2\right ) \sqrt {c-d x^2}} \, dx=\int { -\frac {\sqrt {e x}}{{\left (b x^{2} - a\right )} \sqrt {-d x^{2} + c}} \,d x } \]

input
integrate((e*x)^(1/2)/(-b*x^2+a)/(-d*x^2+c)^(1/2),x, algorithm="giac")
 
output
integrate(-sqrt(e*x)/((b*x^2 - a)*sqrt(-d*x^2 + c)), x)
 
3.9.83.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {e x}}{\left (a-b x^2\right ) \sqrt {c-d x^2}} \, dx=\int \frac {\sqrt {e\,x}}{\left (a-b\,x^2\right )\,\sqrt {c-d\,x^2}} \,d x \]

input
int((e*x)^(1/2)/((a - b*x^2)*(c - d*x^2)^(1/2)),x)
 
output
int((e*x)^(1/2)/((a - b*x^2)*(c - d*x^2)^(1/2)), x)